A new Bacillus subtilis gene, med, encodes a positive regulator of comK.
نویسندگان
چکیده
Bacillus subtilis degR, a positive regulator of the production of degradative enzymes, is negatively regulated by the competence transcription factor ComK which is overproduced in mecA null mutants. We used transposon Tn10 to search for a mutation that reduced the repression level of degR caused by a mecA mutation. A new gene exerting positive regulation on comK was obtained and designated med (suppressor of mecA effect on degR). Sequence determination, Northern analysis, and primer extension analyses revealed that the med gene contained an open reading frame (ORF) composed of 317 codons and was transcribed into an approximately 1,250-nucleotide mRNA together with its short downstream gene. The expression of comK is positively regulated by factors such as ComK itself, ComS (SrfA)-MecA, DegU, SinR, and AbrB. Quantitative analyses using comK'-'lacZ, srfA-lacZ, degU'-'lacZ, and sinR'-'lacZ fusions showed that disruption of med caused a significant decrease in comK expression in both mecA+ and mecA strains, while expression of srfA, sinR, and degU was not affected by the mutation. An epistatic analysis revealed that overproduction of ComK resulted in alteration of med expression, suggesting a regulatory loop between comK and med. Several possible mechanisms for positive regulation of comK by Med are discussed.
منابع مشابه
Med, a cell-surface localized protein regulating a competence transcription factor gene, comK, in Bacillus subtilis.
Med was found as a positive regulator for comK, a master regulator for late competence genes. It was found by Western analysis that the ComK level was decreased in a med mutant. Experiments using an alkaline phosphatase fusion with Med and Western analysis of Med were done because a putative lipo-modification signal is found at the N-terminus of Med. The results obtained are consistent with the...
متن کاملThe pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis.
The response regulator DegU is involved in various late-growth developmental processes in Bacillus subtilis, including the production of degradative enzymes and the development of genetic competence. DegU is essential for the expression of the competence transcription factor, encoded by comK. ComK is required for the transcription of genes encoding the DNA uptake and integration machinery, as w...
متن کاملExpression of transcription activator ComK of Bacillus subtilis in the heterologous host Lactococcus lactis leads to a genome-wide repression pattern: a case study of horizontal gene transfer.
Horizontal gene transfer (HGT) is generally considered a possible mechanism by which bacteria acquire new genetic properties. Especially when pathogenicity genes are involved, HGT might have important consequences for humans. In this report we describe a case study of HGT in which a transcriptional activator, ComK of Bacillus subtilis, was introduced into a heterologous host species, Lactococcu...
متن کاملFunctional Analysis of the ComK Protein of Bacillus coagulans
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the ...
متن کاملCompetence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor.
Competence is a physiological state, distinct from sporulation and vegetative growth, that enables cells to bind and internalize transforming DNA. The transcriptional regulator ComK drives the development of competence in Bacillus subtilis. ComK is directly required for its own transcription as well as for the transcription of the genes that encode DNA transport proteins. When ComK is sequester...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 179 20 شماره
صفحات -
تاریخ انتشار 1997